RINm5f cells express inactivating BK channels whereas HIT cells express noninactivating BK channels.

نویسندگان

  • Z W Li
  • J P Ding
  • V Kalyanaraman
  • C J Lingle
چکیده

Large-conductance Ca2+- and voltage-activated BK-type K+ channels are expressed abundantly in normal rat pancreatic islet cells and in the clonal rat insulinoma tumor (RINm5f) and hamster insulinoma tumor (HIT) beta cell lines. Previous work has suggested that the Ca2+ sensitivity of BK channels in RIN cells is substantially less than that in HIT cells, perhaps contributing to differences between the cell lines in responsiveness to glucose in mediating insulin secretion. In both RIN cells and normal pancreatic beta cells, BK channels are thought to play a limited role in responses of beta cells to secretagogues and in the electrical activity of beta cells. Here we examine in detail the properties of BK channels in RIN and HIT cells using inside-out patches and whole cell recordings. BK channels in RIN cells exhibit rapid inactivation that results in an anomalous steady-state Ca2+ dependence of activation. In contrast, BK channels in HIT cells exhibit the more usual noninactivating behavior. When BK inactivation is taken into account, the Ca2+ and voltage dependence of activation of BK channels in RIN and HIT cells is essentially indistinguishable. The properties of BK channel inactivation in RIN cells are similar to those of inactivating BK channels (termed BKi channels) previously identified in rat chromaffin cells. Inactivation involves multiple, trypsin-sensitive cytosolic domains and exhibits a dependence on Ca2+ and voltage that appears to arise from coupling to channel activation. In addition, the rates of inactivation onset and recovery are similar to that of BKi channels in chromaffin cells. The charybdotoxin (CTX) sensitivity of BKi currents is somewhat less than that of the noninactivating BK variant. Action potential voltage-clamp waveforms indicate that BK current is activated only weakly by Ca2+ influx in RIN cells but more strongly activated in HIT cells even when Ca2+ current magnitude is comparable. Concentrations of CTX sufficient to block BKi current in RIN cells have no effect on action potential activity initiated by glucose or DC injection. Despite its abundant expression in RIN cells, BKi current appears to play little role in action potential activity initiated by glucose or DC injection in RIN cells, but BK current may play an important role in action potential repolarization in HIT cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivating and noninactivating Ca(2+)- and voltage-dependent K+ current in rat adrenal chromaffin cells.

The properties of Ca(2+)- and voltage-dependent K+ currents and their role in defining membrane potential were studied in cultured rat chromaffin cells. Two variants of large-conductance, Ca2+ and voltage-dependent BK channels, one noninactivating and one inactivating, were largely segregated among patches. Whole-cell noninactivating and inactivating currents resulting from each of these channe...

متن کامل

Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells.

Large-conductance Ca2+- and voltage-dependent potassium (BK) channels exhibit functional diversity not explained by known splice variants of the single Slo alpha-subunit. Here we describe an accessory subunit (beta3) with homology to other beta-subunits of BK channels that confers inactivation when it is coexpressed with Slo. Message encoding the beta3 subunit is found in rat insulinoma tumor (...

متن کامل

Differential regulation of action potentials by inactivating and noninactivating BK channels in rat adrenal chromaffin cells.

Large-conductance Ca(2+)-activated K(+) (BK) channels can regulate cellular excitability in complex ways because they are able to respond independently to two distinct cellular signals, cytosolic Ca(2+) and membrane potential. In rat chromaffin cells (RCC), inactivating BK(i) and noninactivating (BK(s)) channels differentially contribute to RCC action potential (AP) firing behavior. However, th...

متن کامل

Voltage-dependent Ca2+ channels, not ryanodine receptors, activate Ca2+-dependent BK potassium channels in human retinal pigment epithelial cells

PURPOSE In different tissues the activation of large conductance Ca2+-activated (BK) potassium channels has been shown to be coupled to voltage-gated Ca2+ channels as well as ryanodine receptors. As activation of BK channels leads to hyperpolarization of the cell, these channels provide a negative feedback mechanism for Ca2+-induced functions. Many cellular functions of the retinal pigment epit...

متن کامل

Bovine versus rat adrenal chromaffin cells: big differences in BK potassium channel properties.

Both bovine and rat adrenal chromaffin cells have served as pioneering model systems in cellular neurophysiology, including in the study of large conductance calcium- and voltage-dependent K(+) (BK) channels. We now report that while BK channels dominate the outward current profile of both species, specific gating properties vary widely across cell populations, and the distributions of these pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 81 2  شماره 

صفحات  -

تاریخ انتشار 1999